- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Pavlidis, Spyridon (3)
-
Sengupta, Rohan (3)
-
Collazo, Ramón (2)
-
Dangi, Saroj (2)
-
Khachariya, Dolar (2)
-
Kohn, Erhard (2)
-
Reddy, Pramod (2)
-
Sitar, Zlatko (2)
-
Bagheri, Pegah (1)
-
Breckenridge, M. Hayden (1)
-
Davydov, Albert V. (1)
-
Dycus, J. Houston (1)
-
Kirste, Ronny (1)
-
Krylyuk, Sergiy (1)
-
Mita, Seiji (1)
-
Rathkanthiwar, Shashwat (1)
-
Szymanski, Dennis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Among group VI transition metal dichalcogenides, MoTe 2 is predicted to have the smallest energy offset between semiconducting 2H and semimetallic 1T′ states. This makes it an attractive phase change material for both electronic and optoelectronic applications. Here, we report fast, nondestructive, and full phase change in Al 2 O 3 -encapsulated 2H-MoTe 2 thin films to 1T′-MoTe 2 using rapid thermal annealing at 900 °C. Phase change was confirmed using Raman spectroscopy after a short annealing duration of 10 s in both vacuum and nitrogen ambient. No thickness dependence of the transition temperatures was observed for flake thickness ranging from 1.5 to 8 nm. These results represent a major step forward in understanding the structural phase transition properties of MoTe 2 thin films using external heating and underline the importance of surface encapsulation for avoiding thin film degradation.more » « less
-
Khachariya, Dolar; Mita, Seiji; Reddy, Pramod; Dangi, Saroj; Dycus, J. Houston; Bagheri, Pegah; Breckenridge, M. Hayden; Sengupta, Rohan; Rathkanthiwar, Shashwat; Kirste, Ronny; et al (, Applied Physics Letters)The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3 μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9 μm are 850 and 1500 V, respectively.more » « less
-
Khachariya, Dolar; Szymanski, Dennis; Sengupta, Rohan; Reddy, Pramod; Kohn, Erhard; Sitar, Zlatko; Collazo, Ramón; Pavlidis, Spyridon (, Journal of Applied Physics)
An official website of the United States government
